skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Holovachov, Oleksandr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Meiofauna, organisms smaller than 1 mm, are the most abundant and diverse invertebrates inhabiting the world's ocean floor but their contribution to benthic oxygen demand is still poorly constrained. This knowledge is crucial for understanding seabed respiration, global marine carbon, and oxygen cycles, which are relevant to all nutrient cycling and energy flows in the ecosystem. It is common to predict meiofauna respiration based on their biomass or volume, which are difficult to quantify, and thus meiofauna are rarely included in biogeochemistry studies. In addition, it is still unknown how well the generalized allometric relations describe all meiofauna respiration. Therefore, we used a novel approach specially developed for single meiofauna respiration measurements to derive the respiration rates of 10 meiofauna groups in two marine and one brackish coastal muddy environments under oxic and hypoxic conditions, representing natural sediment conditions. Our estimates suggest that large ostracods and juveniles of macrofauna (e.g., bivalves, trumpet worms, and priapulids) had the highest individual respiration rates. Meiofauna community as a whole contributed 3–33% to sediment oxygen uptake. However, the most important contributors to the overall sediment oxygen uptake were nematodes and foraminifera which had lower respiration rates but were highly abundant. Therefore, out of more than 22 meiofauna phyla, we recommend that nematode and foraminifera respiration, which contributes 3–30% (total 3–33%) to sediment oxygen uptake, should be taken into consideration in any estimations of benthic oxygen and carbon cycles. 
    more » « less